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ABSTRACT

In this paper, we introduce the concept of lower level subsets of Intuitionistic Anti L-fuzzy M- subgroups and

investigate some related properties.
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I. INTRODUCTION

A fuzzy set theory has developed in many directions
and finding application in a wide variety of fields.
Zadeh's classical paper [21] of 1965 introduced the
concepts of fuzzy sets and fuzzy set operations. The
study of fuzzy groups was started by Rosenfeld [17] and
it was extended by Roventa [18] who have introduced
the concept of fuzzy groups operating on fuzzy sets and
many researchers [1,7,9,10] are engaged in extending
the concepts. The concept of intuitionistic fuzzy set was
introduced by Atanassov. K.T [2,3], as a generalization
of the notion of fuzzy sets. Choudhury. F.P et al [6]
defined a fuzzy subgroup and fuzzy homomorphism.
Palaniappan. N and Muthuraj, [11] defined the
homomorphism, anti-homomorphism of a fuzzy and an
anti-fuzzy subgroups. Pandiammal. P, Natarajan. R
and Palaniappan. N, [13] defined the homomorphism,
anti-homomorphism of an anti L-fuzzy M-subgroups,
Pandiammal. P, [14] defined Intuitionistic Anti L-
fuzzy M- subgroups of M-groups, Pandiammal. P, [15]
defined Intuitionistic Anti L-fuzzy Normal M-
subgroups of M-groups. In this paper we introduce and
discuss the algebraic properties of lower level subsets of
Intuitionistic Anti L-fuzzy M-subgroups of M-group
with operator and obtain some related results.
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II. PRELIMINARIES

2.1 Definition: Let G be a M-group. A L-fuzzy subset
A of G is said to be anti L-fuzzy M-subgroup
(ALFMSG) of G if its satisfies the following axioms:

(1) pa( mxy ) < pa(X) v pa(y),
(i) pa( X ™) < pa( x),

forall xandy in G.

2.2 Definition: Let (G, ) be a M-group. An
intuitionistic L-fuzzy subset A of G is said to be an
intuitionistic L-fuzzy M-subgroup (ILFMSG) of G if
the following conditions are satisfied:

(1) pa( mxy ) = pa(X)Apa(y),
(i) pa( X ) > pa( x),

(i) va( mxy ) <va(X)v va(y),
(iv) va( x™) < va( x),

forall xand y in G.

2.3 Definition: Let (G,") and (G') be any two M-
groups. Let f : G — G' be any function and A be an
intuitionistic L-fuzzy M-subgroup in G, V be an
intuitionistic L-fuzzy M-subgroup in f ( G ) = G/,
defined by uu(y) = sy #a() and vv (%) = jy g valx),

xef(y) xef(y)
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forall xin Gandy in G'. Then A is called a preimage of
V under f and is denoted by f *(V).

2.4 Definition: Let A and B be any two intuitionistic L-
fuzzy subsets of sets G and H, respectively. The product
of A and B, denoted by AxB, is defined as AxB = { { (X,
V) uaxe( X, Y ), vae( X, y) )/ forall xin G and y in
H }, where paxe( X, ¥) = pa(x) A pe(y) and vaxe( X, y)
= va(X) v va(y).

2.5 Definition: Let A and B be any two intuitionistic L-
fuzzy M-subgroups of a M-group (G, -). Then A and B
are said to be conjugate intuitionistic L-fuzzy M-
subgroups of G if for some g in G, pa(X) = ps( g7*xg)
and va(X) = ve( g'xg ), for every x in G.

2.6 Definition: Let A be an intuitionistic L-fuzzy subset
in a set S, the strongest intuitionistic L-fuzzy relation
on S, that is an intuitionistic L-fuzzy relation on A is V
given by pv( X, y ) = pa(X) Apa(y) and vv(x, y) = va(X)
v va(y), forall xandy in S.

2.7 Definition: Let A be a L-fuzzy subset of X. For tin
L, the lower level subset of A is the set, A, ={x € X:
ua(x) <t }. This is called an anti L-fuzzy lower level
subset of A.

2.8 Definition: Let A be an intuitionistic L-fuzzy subset
of X. For o and B in L, the (o, B)-level subset of A is
the set A (o, 5) = {X €X : pa(x) > a and va(x) < }. This
is called an intuitionistic L-fuzzy level subset of A.

III. LOWER LEVEL SUBSETS OF
INTUITIONISTIC ANTI L-FUZZY M-
SUBGROUPS

3.1 Definition: An intuitionistic fuzzy subset p in a
group G is said to be an intuitionistic anti fuzzy
subgroup of G if the following axioms are satisfied.

(i) BACY)<HAG)VHAW), (1) pa( X ) < pa( x ),
(iii)va( Xy )=2va(X) A va(y), (iv) va(x)<va(x ), for all x
andyin G.

3.2 Proposition: Let G be a group. An intuitionistic
fuzzy subset p in a group G is said to be an intuitionistic
anti fuzzy subgroup of G if the following conditions are
satisfied.

(1) pa(xy ) < pa(®) v pa(y), (i) va(xy ) = va(X) A va(y),
forall x ,y in G.

3.3 Definition: Let G be an M-group and p be an
intuitionistic anti fuzzy group of G. If pa (Mx) < pa (X)
and va (mx) > va (X) for all x in G and m in M then p is
said to be an intuitionistic anti fuzzy subgroup with
operator of G. We use the phrase p is an intuitionistic
anti L-fuzzy M-subgroup of G.

3.4 Example: Let H be M-subgroup of an M-group G
and let A = (ua,va) be an intuitionistic fuzzy set in G
defined by

ua(x)=J 03;xeH
0.5; otherwise

0.6;xeH
va(X) = | 0.3; otherwise

for all x in G. Then it is easy to verify that A = (ua,va)
is an anti fuzzy M- subgroup of G.

3.5 Definition: Let A and B be any two intuitionistic
anti L-fuzzy M-subgroups of a M-group (G, °). Then A
and B are said to be conjugate intuitionistic anti L-
fuzzy M-subgroups of G if for some g in G, pa(x)=
ue(97xg) & va(x)=ve(g'xg), for every x in G.

3.6 Proposition: If p=(du, Au) is an intuitionistic anti
fuzzy M-subgroup of an M- group G, then for any x, ye
Gandme M.

(1) pa(mxy ) < pa(X) v pa(y),

(i) pa(mx ™) < pa( x) and

(i) va( mxy ) = va(X) A va(y),

(iv) va(mx™) < va(x), forall xand y in G.

3.7 Theorem: A is an intuitionistic anti L-fuzzy M-
subgroup of a M-group (G, -) if and only if pa( mxy ™)
< pa(X) v pa(y) and va( mxy™) = va(x) A va(y), for all x
&yinG.

3.8 Definition: Let A be an Intuitionistic Anti L-fuzzy
subset of X. For o and B in L, the (a , B)-level subset of
Alistheset A, 5)={X eX: pa(x) < a and va(x) > B}.
This is called an Intuitionistic Anti L-fuzzy level
subset of A.
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IV. PROPERTIES OF INTUITIONISTIC ANTI L-
fuzzy LEVEL SUBSETS

4.1 Theorem: Let A be an intuitionistic anti L-fuzzy M-
subgroup of a M-group G. Then for o and 3 in L such
that o < pa(e) and B > va(e), A(a p)is @ M-subgroup of
G, where e is the identity element of G.

Proof: For all x and y in A, ), We have, pa(x) < o and
va(x) > B and pa(y) < a and va(y) > B.

Now, pa(mxy™) < ua(X) A pa(y) , (as A is an
IALFMSG of a M-group G) <a A o = a,

which implies that, pa(mxy™) < a.

And also, va(mxy™) > va(X) v va(y) , (as A is
an IALFMSG of a M-group G) >Bv B =B,
which implies that, va(mxy™) > p.

Therefore, pa(mxy™) < o and va(mxy™) > B, we get
mxy-:L in A( o B)-
Hence A, p) is @ M-subgroup of a M-group G.

4.2 Definition: Let A be an intuitionistic L-fuzzy M-
subgroup of a M-group G. The level M-subgroup A, ),
for oo and B in L such that o > pa(e) and B < va(e) is
called an intuitionistic anti L-fuzzy level M-subgroup
of A.

4.3 Theorem: Let A be an intuitionistic anti L-fuzzy M-
subgroup of a M-group G. Then two intuitionistic anti

L-fuzzy level M-subgroups A(alﬁl), AY )and oy and

@b
ozin L, Brand B, in L and oy > pa(e), oz > pa(e), Bi<
va(e) and B, < va(e) with oy < ap and B, <B; of A are
equal iff there is no x in G such that a; < pa(X), pa(x) <
o, B1 > va(x) and va(x) > B, where e is the identity
element of G.

Proof: Assume that A, ;) = A, ;.

Suppose there exists x in G such that o< pa(x), pa(x) <
oy, Bl> VA(X) and VA(X) > Bz.
Then ﬁalﬁl) - Atazvﬂz)’ which implies that x belongs to

A(a2, B2) but not in Axal’ﬂl).
This is contradiction to ﬁalﬁl) = Ataz,ﬂz) )

Therefore there is no x in G such that oy < pa(x),
Ha(X)<o, B1 > va(X) and va(x) > B..

Conversely,
if there is no x in G such that a; < pa(X), ua(x) < oy, B1 >
VA(X) and VA(X) > Bz.

Then Ataz,ﬂl) = Ataz,ﬂz)'

4.4 Theorem: Let G be a M-group and A be an
intuitionistic anti L-fuzzy subset of G such that A, p)
be a M-subgroup of G. If a and B in L satisfying o >
pa(e) and B < va(e), then A is an intuitionistic anti L-
fuzzy M-subgroup of G, where e is the identity element
in G.

Proof: Let G be a M-group. For x and y in G and m in
M.

Let pa(X) = oz and pa(y) = oz, va(x) = 1 and va(y) = B2.

Case (i):
If o, < oz and B1 > B then x and y in Acag, p1).-
As A, 4 isalevel M-subgroup of G, xy in Ap)-

Now, pa(mxy ) < oy = oy v az = pa(X) v pa(y) ,

which implies that pa(mxy ™) < pa(x) v pa(y), for all x
andyin G.

And , va(mxy ) > B1 = B1v B2 = va(X) Ava(y),

which implies that va(mxy ™) > va(X) A va(y), for all x
andyin G.

Case (ii):
If oy <oz and By <P thenxandyin A, ;..

As Atal’ﬁz) is a level M-subgroup of G, xy in ﬁ%ﬂz).

Now, pa(mxy™) < o = ouve, = pa(X) v paly),

which implies that pa(mxy ™) < pa(x) v pa(y), for all x
andyin G. And,

Va(Mxy ™) > B2 = BoA B1= Va(Y) A Va(X),

which implies that va(mxy ™) > va(y) A va(X), for all x
andyin G.

Case (iii):
If a, > a;and B, > B thenxandyin A, .
As ,%M) is a level M-subgroup of G, xy in A(az,ﬂl)'

Now, pa(mxy )<t = a2 v o = paly) v pa(X),

which implies that pa(mxy ™) < pa(xX) v pa(y), for all x
andyinG.

And,va(mxy ™) > B1= B1A B2= Va(X) A Va(Y),

which implies that va(mxy ™) > va(X) A va(y), for all x
andyin G.
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Case (iv):
If a1 > oz and By < By then xand y in A, .

As Ataz,ﬂz) is a level M-subgroup of G, xy in Ataz,ﬂz)'

Now, ua(mxy™H< o, = o v oty = paly) v pa(x),

which implies that pa(mxy ‘l) < ualy) v pa(x), for all x
andyin G.

And, va(mxy™) > B2 = B2 A B1= Valy) A Va(X),

which implies that va(mxy ™) > va(y) A va(x), for all x
andyin G.

Case (v):

If oy = oz and By = Bo.

It is trivial.

In all the cases, A is an intuitionistic anti L-fuzzy M-
subgroup of a M-group G.

Hence A is an intuitionistic anti L-fuzzy M-subgroup of
a M-group G.

4.5 Theorem: Let A be an intuitionistic anti L-fuzzy M-
subgroup of a M-group G. If any two level M-subgroups
of A belongs to G, then their intersection is also level
M-subgroup of Ain G.

Proof: For ajand oy in L, B;and B2 in L, oy and o, >
ua(e), Brand B, < va(e), where e is the identity element
in G.

Case (i):
If o< “A(X) < o and Bl> VA(X) > Bzy then At

&alvﬁl).

Therefore, AYal,ﬂl) M Ataz,ﬂz): Ataz,ﬂz)’ but Atazﬁz) is a
level M-subgroup of A.

Case(ii):
If o> ]J,A(X) > o and B1<VA(X) < Bz, then At

Atazﬁz) '

Therefore, Atalvﬂl) M Ataz,ﬂz): Aial,ﬁa)v but A a1, p1)is a
level M-subgroup of A.
Case (iii):

29} rﬂz) =

.f) s

If o< pa(X) <o and B1< va(X) < B2, then AYazJil) CAa,

p2)-

Therefore, ,%M) N A, p2) = A(az,ﬂl)' but '%az,/a) is a
level M-subgroup of A.

Case (iv):

If 0,1>|J,A(X)>(X,2 and Bl> VA(X)>BZ, then AX

Arazﬁi) )

Therefore, ﬁ%ﬂz) N Ataz,ﬁl) = Aialyﬂz)' but ﬁ%ﬂz) is a
level M-subgroup of A.

0‘1vﬂ2) =

Case (v):

If oy = o, and By = By, then ﬂalﬁl) = Ataz,/fz)-

In all cases, intersection of any two levels M-subgroup
is a level M-subgroup of A.

4.6 Theorem: Let A be an intuitionistic anti L-fuzzy M-
subgroup of a M-group G. If aand Bjin L, ai > pa(e), Bj
< va(e) and A i) 1 and jin I, is a collection of level
M-subgroups of A, then their intersection is also a level
M-subgroup of A.
Proof: It is trivial.

4.7 Theorem: Let A be an intuitionistic anti L-fuzzy M-
subgroup of a M-group G. If any two level M-subgroups
of A belongs to G, then their union is also a level M-
subgroup of Ain G.

Proof: Let oyand o in L, Brand B, in L, oy and o, <
ua(e), Brand Bz > va(e).

Case (i):

If ou< pa(X)<o, and B> va(X)>B, then 'AY

'Aial'ﬁl).

Therefore, A, . U A, 51 = A,z BULA, 5 isa
level M-subgroup of A.

.5) =

Case (ii):
If o> l,lA(X) > and B1<VA(X) < Bg, then At
Axazﬁz)'

Therefore, A(alﬁl) U Aiaz,ﬂz) = A(az,ﬂz)’ but Ar%ﬂz) is a
level M-subgroup of A.

alvﬂl) <

Case (iii):
If o< HA(X) < o and B1<VA(X)< [32’ then At

Aral,ﬂz) )

Therefore, A, ﬁl)uAtalﬁz) = ATapﬂz)’ but Atal,ﬂz) is a
level M-subgroup of A.

azﬁl) <
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Case (iv):
If (11>MA(X) > o and B1> VA(X) > BZ, then At

Atazvﬁl)'

Therefore, Aralﬁz)uﬁtazﬁl)) = Ataz,ﬂl)’ but ﬁazﬁl) is a
level M-subgroup of A.

al'/BZ) <

Case (v):
It %1 = O2.and Bl = BZ’ then ﬁalvﬁl) = Axazﬁz)‘

In all cases, union of any two level subgroups is also a
level M-subgroup of A.

4.8 Theorem: Let A be an intuitionistic anti L-fuzzy M-
subgroup of a M-group G. If a;and Bjin L, o > pa(e)
and B; < va(e) and A, gy, 1 and j in 1, is a collection of
level M-subgroups of A, then their union is also a level
M-subgroup of A.
Proof: Itis trivial.

4.9 Theorem: Any M-subgroup H of a M-group G can
be realized as a level M-subgroup of some intuitionistic
anti L-fuzzy M-subgroup of G.

Proof: Let A be the intuitionistic anti L-fuzzy subset of
G defined by

ua(X) =fifxe H,0<a<1

0ifx ¢|Hand

vA(x)=£ifXEH,O<B<1
Oifx a4 H

and o + B < 1, where H is M-subgroup of a M-group G.
We claim that A is an intuitionistic anti L-fuzzy M-
subgroup of a M-group G.

Letxandyin G.

Case (i):

If xand y in Hand min M, then mxy'1 inH,

Since H is a M-subgroup of G,

Therefore, pa(mxy™) = o, pa(X) = o, pa(y) = a.
S0, pa(mxy™) < pa(X) v paly) , forall x and y in G.
Also, va(mxy™) = B, va(x) = B, va(y) = B.

S0, va(mxy™) = va(X) A va(y), forall xand y in G.
Case (ii):

If x in H, y not in H, then mxy‘1 not in H.

Then, pa(mxy™) = 0, pa(X) = a, pa(y) = 0.
Therefore, pa(mxy™) < pa(X) v pa(y), for all x and y in
G.

And va(mxy™) = 0, va(x) = B, va(y) = 0.

Therefore, va(mxy™) > va(x) A va(y), for all x and y in
G.

Case (iii):

If x and y not in H, then mxy™ may or may not belong
to H.

Clearly pa(mxy™) < pa(X) va(y), for all x and y in G.
Also, va(mxy™) > va(x) A va(y), forall xand y in G.

In any case, pa(mxy™) < pa(X) v pa(y) and va(mxy™) >
va(X) A va(y), forall xandy in G .

Thus in all the cases, A is an intuitionistic anti L-fuzzy
M-subgroup of G.

4.10 Theorem: Let | be the subset of L and let G be a
M-group with M-subgroups {H;}, i in | such that U H; =
G and i < j implies that H; < H;. Then an intuitionistic
anti L-fuzzy subset A of G defined by pa(x) = A{i/x €
Hi } and va(x) = v{ i/ x € H; } is an intuitionistic anti
L-fuzzy M-subgroup of G.

Proof: Let A be an intuitionistic anti L-fuzzy subset of
G defined by

pua(X) = A{ i/ xeH; } and va(x) = v{ i/ xeH; }, where i
inlcL.

Let xandy in G and pa(x) = m; and

Ha(Y) = Na.

If pa(mxy) = A{i / mxyeH;} < m;v ny, then there exists
j such that x and y are elements of H;, but xy is not an
element of H;, since H; is a M-subgroup of G.

This is a contradiction.

Therefore, pa(mxy) < mgv ny,

which implies that pa(mxy) < pa(X) v pa(y).

Clearly pa(x™) = pa(x). Also, va(x) = m, and va(y) = n,.
If va(mxy) = A{ i/ mxyeH; }> mya ny, then there exists
J such that x and y are elements of H;, but xy is not an
element of H;, since H; is a subgroup of G.

This is a contradiction.

Therefore, va(mxy) > mpA Ny,

which implies that va(mxy) > va(X) A va(y).

Clearly va(x™) = va(X).

Hence A is an intuitionistic anti L-fuzzy M-subgroup of
G.

4.11 Theorem: If A is an intuitionistic anti L-fuzzy
normal M-subgroup of a M-group G, then for each level

M-subgroup A, 5, o and B in L, o > pa(e) and B <
va(e) is a normal M-subgroup of G.

Proof: Let A be an intuitionistic anti L-fuzzy normal
M-subgroup of a M-group G.
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Let A(aﬁ) be any level M-subgroup of A.
To prove that A(a,ﬁ) is a normal M-subgroup in G.

Letxin A, , andginGand min M.

Then, pa(mx) < o and va(mx) > f.
Now, pa( mg“xg) = pa( mxgg™), (Aisa
IALFNMSG of G) = pa(mx) < oL
And, va( mg'xg) = va( mxgg™), (Ais a
IALFNMSG 0f G) = va(mx) > B.
Hence pa( mg™xg ) < o and va( mg™'xg > p.
Therefore, mg“xg in A, ; and hence A, , is a
normal M-subgroup of G.

4.12 Theorem: Let A and B be intuitionistic anti L-
fuzzy subsets of the sets G and H, respectively, and let

ovand Bin L. Then (AxB), 5= A, 5 X B 5.
Proof: Let o and B be in L and (x,y) be in (Ax B)(aﬁ)

S pae (X y)<aand vae (X, y) =B

< palX) v ps(y) <o and va(x) A ve(y) =B
< pa(x)<aand pg(y) <o and va( X) > B
and vg (y) > P

S pal( x) <o and va( X) > B and pp(y) < o
and vg (y) > P

< xin A, pandyin B,

S Xy)in Ay 5 X B, g

Therefore, (Ax B)(aﬁ) = A(a,ﬂ) X B(aﬁ) :

4.13 Theorem: Let A be an intuitionistic anti L-fuzzy
M-subgroup of a M-group G. Then aA, , =(aA), 4,

foreveryain G, aand B in L.
Proof : Let A be intuitionistic anti L-fuzzy M-subgroup
of a M-group G and let x in G.

Now , xe (@A) , 5

<(apa)(x) <aand (ava)(x) > P
< pa(@’x) < aand va@'x) > p

caxel,,

X eaA(a’ﬂ).

Therefore, a A, ;) = (aA), 4 for every xin G.

V. CONCLUSION

Further work is in progress in order to develop the
homomorphism and anti-hnomomorphism of
intuitionistic anti L- fuzzy normal M -subgroups,
homomorphism and anti-hnomomorphism of lower level
subsets of intuitionistic anti L- fuzzy M-subgroup and
intuitionistic anti L-fuzzy normal M-N-subgroups.
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